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Renormalised perturbation theory of ordered systems 
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$ Physics Department, University College, Stillorgan Road, Belfield, Dublin, 4, Ireland 

Received 30 June 1980, in final form 8 December 1980 

Abstract. We introduce a new self-consistent summation procedure for the analysis of 
Feynman-Dyson perturbation series and demonstrate how a self-consistent expression for 
the self-energies of an interacting system may be obtained. We obtain the simplest 
self-consistent solution to the problem of an interacting many fermion system exhibiting 
long-range order, characterised by the existence of anomalous propagators, in which 
correlation effects not described by the Hartree-Fock-Gorkov approximation are 
important. 

1. Introduction 

Conventional perturbation theory expresses the single particle Green function GI1 of a 
system of fermions interacting via an instantaneous, two-body potential U, in terms of 
an infinite series of connected diagrams. In standard notation (Fetter and Walecka 
1971, Mattuck and Johansson 1968) the description of a system, which exhibits 
long-range order characterised by the appearance of anomalous propagators ( Goz and 
GZ0) below a transition temperature, is given by equations (1 .l)-(1.3) 

where a thin solid line running from y to x represents a single particle Green function 
g ( x ,  y )  of the non-interacting system. 
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Denoting’the potential (i/h)U(x, y )  by a wavy line joining the points x and y, the 
first-order contributions to the self-energies are shown explicitly in equations (1.4) 

These diagrams, when coupled with equations (1.1)-( 1.3), represent an extension of the 
Hartree-Fock approximation to the description of systems exhibiting long-range order 
and form the basis of the Gorkov (1958) formulation of the theory of superconductivity. 

The success of this first-order approximation is arguably a consequence of the 
self-consistency imposed by the presence of the exact propagators of the interacting 
system, on the right-hand side (RHS) of equations (1.4). However, when the interaction 
is singular, the above approximation will fail and in order to replace U by a less singular, 
renormalised interaction, an infinite subset of the diagrams appearing on the RHS of 
equations (1.4) must be summed. Such a renormalisation procedure may be viewed as 
introducing a new degree of self-consistency into the solution of equations (1.1)-(1.3), 
which is not present in the first-order diagrams shown explicitly in equations (1.4). 

The particular choice of which subset of higher-order diagrams to sum in a given 
situation is governed by the physics of the problem and such calculations invariably 
proceed in a rather ad hoc manner. Recently however, a self-consistent summation 
technique for the analysis of Feynman-Dyson perturbation series was employed to 
renormalise the interaction lines appearing in the perturbation theory of normal many 
fermion systems systematically (where GO2 = G20 = 0) and it was demonstrated that the 
first-order terms of the resulting perturbation series were sufficient to describe most 
normal systems of physical interest (Lambert and Hagston 1981). 

The success of this renormalisation technique has led us to consider, in the present 
paper, its application to the perturbation theory of systems exhibiting long-range order 
characterised by the existence of anomalous propagators. In particular, we provide a 
systematic evaluation of the ‘first-order’ approximation to equations (1.1)-( 1.3) which 
incorporates the new degree of self-consistency, not present in the diagrams shown 
explicitly in equations (1.4). 

2. Formulation of the problem 

We begin our analysis by formulating the problem from the viewpoint of an infinite 
hierarchy of equations for the Green functions of the interacting system. Depending on 
the definitions of the various propagators (Mattuck and Johansson 1968), equations 
(1.1)-(1.4) may describe, for example, a superconducting electron gas or a ferro- 
magnetic spin system and since much of the analysis described below follows straight- 
forwardly from the topology of the perturbation series, the same will be true of our final 
result. However, for convenience we shall employ the following definitions for the 
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propagators of the system 

(i)(m + n)’2 Gm,”(l, 2, . , . , m ;  1 ’ 3  2’2 . 
(2.1) 

where $(m + n )  will always be an integer in what follows. The average (. . .) in equation 
(2.1) could also be left unspecified in the following, because the analysis may be carried 
out at finite temperatures as well as T = 0 K. However, again for convenience, we shall 
define our average with respect to the ground state 19) of the system, which satisfies 

9 n’)=(T[$(i)$(z) a e $w)$ho$h - +;n,)I) 

HI9)  = EIV). 
In this case, the Heisenberg picture field operators in equation (2.1) have the form 

$(I) = 1 1 )  = exp(ifftl/fi)+(xl) exp( - iHtl/W (2.2) 

where, for a uniform, translationally invariant system, 
00 

= 1 V-’”exp(ik x1)ak. 
k = O  

Writing 

H=Ho+H1 

where 

and 

= 3 d3x1 d3x; u(xl  -xi  )$;X1)$;xi)$(xi)$(xil (2.6) 5 
allows us to write the following expression for the propagators defined by equation 
(2.11, 

Gm,f l ( l , .  . . , m ;  l‘, . . . , n’) 

= f (* l)iC1g(m,i,)Gm-l,n-l(l, . . . , m - 1;  l’, . . . , [ j  - l]’, [ j  + l]’, . . . , n‘) 
j = 1  

. .m 

x G m + l , f l + ~ ( l , .  . . , m - 1, z ‘ ,  z ;  z’, l’ ,  . . . , n’). (2.7) 

The first term on the RHS of this equation vanishes for n = 0 and equation (2.7) is 
valid for m # 0. (An equation for the case where m = 0 is obtained by taking the 
Hermitian conjugate of equation (2.7) with n = 0.) 

The factor (-l)’+’((+l)’+’) which applies for fermions (bosons) is readily accounted 
for by the Feynman rules which apply to the perturbation series we are about to obtain 
(Mattuck and Johansson 1968) and will therefore be ignored in what follows. 

The hierarchy of equations defined by equation (2.7) forms a convenient starting 
point for the formulation of the many-body problem, not least because it lends itself 
readily to diagrammatic analysis. The diagram rules which are applicable to equations 
of this type have been discussed in detail elsewhere (Lambert and Hagston 1981), and 
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are essentially of the following form: 
(i) Represent the propagator Gm,,,(17 2 , .  . . , m ;  I f ,  2', . . . n ' )  by m ( n )  thick full 

lines with free ends entering (leaving) the points 1 ,2 ,  . . . , m (l', 2', . . . a') .  
(ii) Denote g ( j s  j ' )  by a thin full line running from j '  to j .  
(5) Denote (i/zZ)U(x, --xi) by a wavy line joining xz and x:. 
These allow equation (2.7) to be written in the form of equation (2.8) 

1 2 '  n 1 2  n 1 2 '  n 1 ' 2  n' 

(2.8) 

I 4- - - -4 
i' 2 n' 

As a special case of the above rule, we shall employ the notation of equations 
(1.1)-(1.3) for the propagators GI1, GO2, GZ0. The simplest of the above hierarchy of 
equations then take the form of equations (2.9)-(2.11) 

1 1 1  1 

?i=f+t /E 

/E. 
1' 1' 1' 1' 

2 2  2 

1' 1 '  1' 'I= .E. 2' 2 '  i? 2' 

(2.10) 

(2.1 I)  

where we note that the latter is obtained from the Hermitian conjugate of equation 

The higher-order propagators appearing on the RHS of equations (2.9)-(2.11) may 
be evaluated using the techniques of conventional perturbation theory (Fetter and 
Walecka 1971, Mattuck and Johansson 1968) and the result is equations (1.1)-(1.4). 

(2.10). 
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Thus in isolation, equations (2.9)-(2.11) represent no advantage over the conventional 
formulation of perturbation theory. However, when coupled with the higher-order 
equations defined by equation (2.7), the present formulation of the problem becomes 
extremely advantageous, because it allows us to obtain a self-consistent expression for 
the self-energies without explicitly summing terms in the original perturbation series. In 
order to illustrate this feature, we consider first how the higher-order equations may be 
employed to yield an exact expression for the self-energy C l l  in the absence of 
long-range order and then generalise the method to account for the presence of 
anomalous propagators. Our aim then, in the following section, is to obtain an exact 
expression €or the various self-energies which occur when we deal with systems 
exhibiting long-range order. 

3. The two particle propagator 

Above the transition temperature (where Gm,n = 0 unless m = n ) ,  conventional 
perturbation theory (Fetter and Walecka 1971, Nozieres 1964) shows that the two 
particle propagator G2,2(1, 2; l', 2') may be written in the form of e.quation (3.1). 

ii 
M 

1' 2' 

/I* I t +  
1' 2' 2' 1 )  1' 2' 

1' 2' 2' 1' 1' 2' 2' 1' 

One half of the contribution to the term involving the vertex function r may be 
obtained from the other half by simply permuting the labels I' and 2' and, in equation 
(3.1), we have taken advantage of this feature to define a new vertex function r', 
denoted by a broken line. This expression may be substituted into equation (2.9) to 
yield an exact expression for the self-energy Ell (in the absence of long-range order) 
and in an earlier paper (Lambert and Hagston 1981) we demonstrated how this 
expression might be evaluated self-consistently. 

Below the transition temperature, an inspection of the perturbation series (Mattuck 
and Johansson 1968) reveals that equation (3.1) must be generalised to equation (3.2) 
where the broken lines represent vertex function corrections. 
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The analysis is complicated by the fact that instead of just the single vertex function 
I" (where one full line enters and one full line leaves each end of the corresponding 
broken line) there now appear six vertex functions. We shall denote these functions by 
al ,  , . . , a6 and employ the diagrammatic representation of figure 1. 

Figure 1. 

With these definitions the RHS of equation (3.2) may be written explicitly in terms of the 
{ai}. Substituting the result into the RHS of equation (2.9) and comparing with equation 
(1.1) yields equations (3.3) and (3.4) for the self-energies Z l l  and X02 respectively. An 
expression for may be obtained by reversing the arrows in equation (3.4) and thus 
we obtain exact expressions 

L,= -+.E,+ 

(3.3) 

for the self-energies in the presence of long-range order. These equations form the 
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result which we have been seeking and express the self-energies in terms of the vertex 
functions {ai}. All that remains is for us to obtain an expression for the vertex functions 
and we carry out this task in the following section. 

4. A self-consistent evaluation of the vertex functions 

The method which we now introduce expresses the function {ai} in terms of a highly 
summed perturbation series. However, previous calculations (Lambert and Hagston 
1981) on systems where GO2 = GZO = 0 have shown that terms beyond first order in the 
vertex function(s) are unimportant in many physical situations, and hencein the present 
analysis we shall restrict ourselves to the approximation of retaining terms which are at 
most linear in the {ai}. 

The essential steps are as follows. 
(i) In the previous section, we obtained exact expressions for the self-energies after 

evaluating the RHS of equation (2.9). To this end, we examined the perturbation 
expansion for G2,z (equation (3.2)) and obtained a closed form for G2,2 in terms of the 
vertex functions {ai}. This result was then substituted into the RHS of equation (2.9) to 
yield, after comparison with equations (1.1)-(1.3), the desired expressions for the 
self-energies. The closed form for G2,2 obtained in this way is exact and may be 
compared with an alternative expression, which we obtain as follows. 

1 2  1 2  1 2  1 2  

M = 1.: + 11 + :" 
44 

1' 2 1' 2' 2' 1' 1' 2' 

(ii) The expression for G2,2 given by equation (2.8) is shown in equation (4.1) and 
involves a three particle Green function G3,3. Following the method of the preceding 
section, we may express G3,3 in terms of the vertex functions {ai}. However, unlike the 
expression for G2.2 of step (i), the resulting equation for G3,3 has the form of a series 
expansion in powers of the functions {ai}. Retaining terms up to first order in the vertex 
functions, we may substitute the result into equation (4.1) to obtain an alternative 
expression for G2,2. 

(iii) The equations for G2.2 obtained in steps (i) and (ii) may now be compared to 
yield a self-consistent set of equations for the vertex function {ai}. The terms in the 
ensuing analysis have been carefully enumerated (Lambert 1979) and the result is given 
in figure 2, where a6 may be obtained from a5  by reversing the arrows. 

These equations when coupled with equations (1.1)-(1.3) and (3.3)-(3.4) form a 
well defined theory from which many-body calculations on systems exhibiting long- 
range order and interacting via a singular potential might proceed. 

5. Conclusion 

The present analysis forms a systematic renormalisation of the time-dependent 
perturbation theory of systems exhibiting long-range order characterised by the 
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Figure 2. 

existence of anomalous propagators and represents the only theory to date which can 
account for vertex function corrections in a thoroughly self-consistent manner. There 
are several new and important features present in the above formalism, not the least of 
which is the provision of a link between the well known equation of motion method 
(which deals with the differential equation equivalent of our hierarchy of equations) and 
infinite-order perturbation theory. 

In a previous paper (Lambert and Hagston 1981), we'utilised this connection to 
obtain a self-consistent perturbation theory for the description of correlation effects not 
accounted for by the Hartree-Fock approximation, and demonstrated that first-order 
terms in the resulting self-consistent expansion for the vertex function were sufficient to 
describe most normal systems of physical interest. In the present paper, we have 
extended this analysis to encompass systems which exhibit long-range order and 
derived a closed form for the self-energies in terms of the various vertex functions of the 
problem. This expression (shown in equations (3.3) and (3.4)) is exact and thus forms a 
useful starting point from which practical many body calculations may proceed. 

In conventional perturbation theory, such a calculation would invariably proceed by 
performing the summation of an infinite subset of contributions to the various vertex 
functions, selected on the basis of physical arguments. However, in the present paper 
we have shown how this task may actually be avoided. By utilising higher-order 
equations in our hierarchy, we have demonstrated how a highly summed and manifestly 
self-consistent expression for the vertex functions may be obtained, without explicitly 
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summing diagrams in the original perturbation series, and in view of the fact that the 
linear terms in the resulting perturbation series are expected to be sufficient lo describe 
most systems of physical interest, we have calculated these terms explicitly. 

The result is summarised in figure 2, which combines with equations (3.3), (3.4) and 
(1.1141.3) to yield a set of coupled integral equations. This set of self-consistent 
simultaneous equations represents the culmination of all the essential results of 
diagrammatic perturbation theory and any practical calculation is now reduced to the 
task of obtaining their solution. As ap example of such a solution, we note that on 
ignoring vertex function corrections to the self-energies in equations (3.3) and (3.4), we 
obtain the celebrated Hartree-Fock-Gorkov approximation. As a less trivial example, 
wc note that in the case of a dilute condensed Bose gas, interacting via a singular hard 
sphere potential, it has been shown that (Beliaev 1958) the dominant contributions to 
figure 2 arise from the ladder diagrams and a soliition to the set of simultaneous 
equations is readily obtained. However, although this approximation has been suc- 
cessful in accounting for the long-wavelength (i.e. linear) region of the excitation 
spectrum of a superfluid Bose system, there has been no such success in accounting for 
the more complicated roton spectrum. We suggest that one reason for this is the large 
number of diagrams which must be accounted for in the conventional form of pertur- 
bation theory, as summarised in equations (1.1)-(1.3), when vertex function corrections 
are important. Since our final set of equations summarises these infinite sums of 
diagrams in a finite number of terms, we expect the present formalism to have important 
applications in this area of physics. 
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